Electronic triple-dot transport through a bilayer graphene island with ultrasmall constrictions

نویسندگان

  • D Bischoff
  • A Varlet
  • P Simonet
  • T Ihn
  • K Ensslin
چکیده

A quantum dot has been etched in bilayer graphene connected by two small constrictions to the leads. We show that this structure does not behave like a single quantum dot but consists of at least three sites of localized charge in series. The high symmetry and electrical stability of the device allowed us to triangulate the positions of the different sites of localized charge and find that one site is located in the island and one in each of the constrictions. Nevertheless we measure many consecutive non-overlapping Coulomb-diamonds in series. In order to describe these findings, we treat the system as a strongly coupled serial triple quantum dot. We find that the non-overlapping Coulomb diamonds arise due to higher order cotunneling through the outer dots located in the constrictions. We extract all relevant capacitances, simulate the measured data with a capacitance model and discuss its implications on electrical transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic excited states in bilayer graphene double quantum dots.

We report tunneling spectroscopy experiments on a bilayer graphene double quantum dot device that can be tuned by all-graphene lateral gates. The diameter of the two quantum dots are around 50 nm and the constrictions acting as tunneling barriers are 30 nm in width. The double quantum dot features additional energies on the order of 20 meV. Charge stability diagrams allow us to study the tunabl...

متن کامل

Conduction coefficient modeling in bilayer graphene based on schottky transistors

Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...

متن کامل

Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source and drain graphene contacts. Lateral graphene gates are used to electrostatically tune the device. Measurements of Coulomb resonances, including c...

متن کامل

Gate-defined confinement in bilayer graphene-hexagonal boron nitride hybrid devices.

We report on the fabrication and measurement of nanoscale devices that permit electrostatic confinement in bilayer graphene on a substrate. The graphene bilayer is sandwiched between hexagonal boron nitride bottom and top gate dielectrics. Top gates are patterned such that constrictions and islands can be electrostatically induced. The high quality of the devices becomes apparent from the smoot...

متن کامل

Coherent electronic transport through graphene constrictions: subwavelength regime and optical analogy.

Nanoelectronic devices smaller than the electron wavelength can be achieved in graphene with current lithography techniques. Here we show that the electronic quantum transport of graphene subwavelength nanodevices presents deep analogies with subwavelength optics. We introduce the concept of electronic diffraction barrier to represent the effect of constrictions and the rich transport phenomena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013